Сегодняшнее занятие мы посвятим тому, что вспомним, какие числа называют рациональными, приведём примеры. Затем разберём все арифметические операции, которые можно произвести с рациональными числами. Алгоритм решения примеров на сложение, вычитание, умножение и деление рациональных чисел остаются прежними. Мы повторим их и приступим к выполнению практической части нашего занятия.
Теория по теме Арифметические операции с рациональными числами
Рациональные числа - это числа, которые можно представить в виде {|frac|a|b|}, где a - целое число, b - натуральное число.
Множество рациональных чисел обозначается Q.
Получается, что к рациональным числам относятся натуральные числа, целые числа, обыкновенные дроби, десятичные дроби.
Примеры рациональных чисел:
-{|frac|2|5|};0,25; -3,98; 5; 123; {|frac|10|68|} и т.д.
Множество рациональных чисел бесконечно, т.е. нет наибольшего и наименьшего рационального числа.
Вспомним, какие бывают арифметические операции:
сложение
вычитание
умножение
деление.
Чтобы выполнить задания по данной теме необходимо вычислить значение выражения по действиям.
Порядок действий в выражениях без скобок:
действия выполняются слева направо
сначала выполняются умножение и деление, потом вычитание и сложение.
Порядок действий в выражениях со скобками:
сначала выполняются действия внутри скобок, согласно порядку действий выше
после того, как значения внутри всех скобок подсчитаны, необходимо выполнять действия согласно правилам действий в выражениях без скобок.
Необходимо помнить правила арифметических действий как с обычными, так и с десятичными дробями.
Заключение
Наше занятие подходит к концу. Осталось лишь выполнить практическое задание, которое подготовил для Вас Виртуальный Учитель. Повторите порядок действий при решении примеров с рациональными числами и смело приступайте к подборке заданий.
Правда ли, что математика – самый сложный предмет?Математика вызывает трудности у многих школьников. Но действительно ли её так трудно понять? Давайте разбираться вместе