Текстовые задачи на поиск наибольшего и наименьшего значения
Вступление
Сегодня мы узнаем, где ещё нам пригодится производная функции. План на занятие - научиться находить наибольшее значение функции и наименьшее значение функции. Изучить правило и алгоритм действий. Часто в задачах Вы будете встречать такую формулировку: найти точку минимума и точку максимума определённой функции. Это и есть те значения, которые мы сегодня научимся искать.
Теория по теме Нахождение наибольшего и наименьшего значений функции
Чтобы найти наибольшее и наименьшее значение функции, можно воспользоваться ее графиком, однако в задачах далеко не всегда даны графики функций, а строить их довольно долго и иногда сложно. Поэтому для нахождения максимума и минимума функции используют производную функции.
Правило.
Если функция непрерывна на отрезке[a;b], то наибольшее значение функции, как и наименьшее значение функции может достигаться только в точках экстремума функции и на концах отрезка, т.е. в точках a и b.
Если функцияy=f(x)непрерывна на отрезке[a;b], то, чтобы найти наибольшее значение функции на отрезке и наименьшее значение функции на отрезке, необходимо:
найти точки экстремума функции, принадлежащие отрезку,
вычислить значения функции y=f(x) в точках экстремума и в конечных точках отрезка a и b,
среди этих значений, наименьшее будет точкой минимума функции, а наибольшее будет точкой максимумафункции.
Если функция непрерывна на интервале (a;b), то наибольшее и наименьшее значения функции нужно выбирать из точек экстремума.
Заключение
Как Вы, наверное, заметили, обладая теми знаниями о функции и о производной функции найти наибольшее значение функции и наименьшее значение функции не составляет большого труда. Шаг за шагом следуя алгоритму, Вы легко выполните эти задачи. А сейчас потренируйтесь на заданиях, которые подготовил для Вас Виртуальный Учитель. Нажимайте кнопку решать и проходите практическую часть нашего занятия.
Почему время учить математику именно в школе?Взрослые часто любят говорить: «Всему своё время.» А мы с уверенностью готовы утверждать, что лучшее время для изучения математики именно в школе!